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Theory of critical enhancement of photorefractive beam coupling
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We develop the idea of critical enhancement of the photorefractive response near the threshold of parametric
excitation of space-charge waves~the spatial subharmonics! taking into account the vectorial character of beam
coupling and a fairly strong broadening of the nonlinear resonance owing to light absorption. The results of our
calculations are a description of the measurable characteristics of critical enhancement and optimization of the
experimental conditions for detection of anomalously high amplification gain factors in cubic Bi12SiO20 crys-
tals.
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I. INTRODUCTION

Most of the known nonlinear effects in photorefracti
media are caused by the optical photorefractive nonlinea
whose main constituents are charge separation under
and diffraction on a corresponding index replica. Amo
these effects are spatial amplification, phase conjugation,
tical oscillations, pattern formation, soliton propagation, a
others@1–3#. The nonlinearity of the material equations f
the light-induced space-charge field plays here a secon
role, if any.

The generation of spatial subharmonics in fast photo
fractive materials—detected first in cubic Bi12SiO20 crystals
@4–6# and found then@7–9# in the other representatives o
the sillenite family (Bi12TiO20 and Bi12GeO20) and in the
semiconductor CdTe—has been recognized as a fundam
phenomenon caused fully by the material nonlinearity. T
conclusion is based not only on theoretical considerati
@10–13# but also on firm experimental evidence@14,15#.

It is well established nowadays~see@2,11,16,17# and ref-
erences therein! that subharmonic generation during optic
two-wave mixing is caused by parametric instability of t
fundamental space-charge grating, recorded by two cohe
light beams, against excitation of weakly damped spa
charge waves~SCWs!. The necessary precondition for th
instability is either application of a dc electric fieldE0 to-
gether with the introduction of a small frequency detuningV
between the pump beams or application of a rapidly oscil
ing ac field. If KW is the fundamental grating vector~the dif-
ference between the light wave vectors! then the wave vecto
of the parametrically excited SCW isKW /2, its eigenfrequency
is vKW /2 , and the condition for parametric resonance re
V52vKW /2 .

The development of subharmonic theory based on
idea of parametric excitation of SCWs@18,19# has allowed
an explanation of a number of distinctive features of
subharmonic generation@14,15,20,21#. The notion of space-
charge waves has given new additional into the kno
mechanisms of dc and ac enhancement of the fundame
grating @2,3# by identifying the relevant enhancement fact
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with the quality factor of the SCW,QK . Within the above
development, the optical processes were expected to s
merely for visualization of SCWs by means of Bragg diffra
tion.

Recently, it was found@22# that joint action of the mate-
rial and optical nonlinearities can result in qualitatively ne
optical effects having as a common root the critical enhan
ment of the photorefractive response. This critical enhan
ment is distinguished by the feasibility of making the pho
refractive response~and the relevant optical effects!
arbitrarily strong by approaching the subharmonic genera
threshold controlled by the material nonlinearity. The ma
idea of this critical enhancement is to use the pliancy of
subharmonic grating~near the threshold of the instability! for
its efficient excitation. Note that the optical scheme propo
in @22# is basically the same as that investigated ear
@23,24# in an attempt to explain the subharmonic generat
by pure optical mechanisms. Omission of the terms relev
to the material nonlinearity in the initial equations did n
allow Refs.@23,24# to demonstrate critical enhancement.

Unfortunately, the model considered in@22# is too illus-
trative; it does not include two important attributes of t
photorefractive nonlinearity in cubic crystals expected to
appropriate for detection and utilization of critical enhanc
ment. Correspondingly, it is not capable of describing
expected observable characteristics of this phenomenon
the optimization of the experimental conditions.

The first of the above mentioned attributes is attenuat
of the total light intensityI 0 because of light absorption
Since the subharmonic eigenfrequencyvKW /2 is proportional
to I 0, the resonance conditionV52vKW /2 can be satisfied
only within a relatively thin layer of the crystal. Hence, th
critical enhancement can deteriorate and the resonant op
characteristics are subjected to a nonuniform broaden
@25,26#. The second attribute is the vectorial character
beam coupling in cubic photorefractive crystals@27,28#. In
contrast to strongly anisotropic materials~like LiNbO3), the
polarizations of the interacting light waves change stron
because of the linear~optical activity and field-induced bire
fringence! and nonlinear~vectorial diffraction! optical ef-
fects.
©2002 The American Physical Society23-1
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The present paper aims for an extended analysis of
observable characteristics of critical enhancement by tak
into account the above attributes. This includes formulat
of a vectorial model of critical enhancement incorporati
the effects of spatial inhomogeneity~Sec. II!, an analytical
treatment of this model~Sec. III!, numerical characterization
of the critical spatial amplification~Secs. IV and V!, and
discussion of experimental issues relevant to the detectio
the effect under study~Sec. VI!.

II. BASIC RELATIONS

A schematic diagram for critical enhancement which
not much different from that of@22# is presented in Fig. 1
Two pump waves with wave vectorskW1 and kW2, frequency
detuned byV, propagate symmetrically near thez axis in a
cubic crystal appropriate for subharmonic generation. T
produce a light intensity grating with the grating vectorKW

5kW12kW2 moving with velocityV/K in the x direction and
also a corresponding grating of light-induced space cha
In addition to the pump waves, a weak central wave w
wave vectorkW0, detuned byV/2, travels along thez axis. For
convenience, we have setukW0u5(k1,2)z ; the small deficit of
the wave vectorD ~the Bragg mismatch! will be treated
within the envelope approximation. Thus we can say that
wave pairs 0,1 and 2,0 both contribute to the buildup of
subharmonicK/2 grating moving with the same velocity a
the K grating. The last important element shown in the d
gram is a dc electric fieldEW 0 applied in thex direction. This
field facilitates charge separation and makes the space-ch
waves weakly damped@11#.

We assume now thatV'4vK[2vK/2 , where vK
}I 0 /KE0 is the frequency of the SCW with wave vectorK
and I 0 is the total pump intensity@11#. This means that we
are not far from the parametric resonance for excitation
the subharmonicK/2, not far from the linear resonance fo
excitation of the subharmonic by the wave pairs 0,1 and
and far from the fundamental resonance~where V'vK).
The pump intensityI 0 decreases with the propagation coo
dinate as exp(2az), wherea is the light absorption coeffi-

FIG. 1. Wave vector diagram for the critical enhancement. T

grating vectorKW 5kW12kW2 is parallel to the applied fieldEW 0; the

wave vectorkW0 is parallel to the propagation axisz.
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cient. ThereforevK5vK(z) and the exact equalityV
54vK cannot be satisfied in the whole crystal. To justify t
above assumption of the proximity of the subharmonic re
nance in the whole crystal, we have to restrict ourselves
the case of weak absorption,ad!1, whered is the crystal
thickness. This inequality is not very restrictive for critic
enhancement. In particular, it does not mean that we ign
the uniform broadening of the resonance. This effect can
be strong in our theory because the width of the resonanc
considerably smaller thanvK ~see below!.

We can now turn to the relations describing excitation
the space-charge field. LeteK and eK/2 be the envelopes o
the space-charge field harmonics oscillating as exp@i(Kx

2Vt)# and exp@i(Kx2Vt)/2#, respectively, andaW 0 ,aW 1 ,aW 2 be
the vectorial amplitudes of the light waves 0,1,2 normaliz
to AI 0 so thatuaW 1u21uaW 2u251 within the undepleted pump
approximation. Then, using the results of@11,18# and the
equality V'2vK/2 , we can write down the following gov-
erning equation for the subharmonic amplitudeeK/2 :

@] t1gK/21 ivK/22 iV/2#eK/2

5 i uvK/2u~2eKeK/2* 2aW 0•aW 2* 2aW 1•aW 0* !. ~1!

The left-hand side shows the typical features of a forc
wave oscillation. The first term on the right-hand side d
scribes the parametric coupling between the fundame
amplitudeeK andeK/2 caused by the material nonlinearity;
is responsible for the subharmonic generation. The last
terms account for the linear excitation of the subharmo
grating by the wave pairs 0,2 and 1,0. Note that the produ
aW 0•aW 2* andaW 1•aW 0* are nothing else than the half values of t
light contrast induced by these pairs; they do not suffer fr
the linear light absorption. At the same time, the coefficie
gK/2 andvK/2 decrease as exp(2az) because of the intensity
attenuation. Further, we expresseK through the pump con-
trastm52aW 1•aW 2* . SinceV'4vK is far from vK , the exci-
tation of the fundamental grating is not resonant; using
~23a! of @11# we haveeK.m/6. This relation holds true as
long as the unit pump contrast and the fundamental am
tudeeK remain fairly small.

In steady state, resolving Eq.~1! with respect toeK/2 and
taking into account the pump intensity attenuation, we obt

eK/25
2 iQ̃

12j2 FaW 0•S aW 2* 2
im

3
Q̃* aW 1* D

1aW 0* •S aW 12
im

3
Q̃* aW 2D G . ~2!

Here Q̃5@QK/2
211 id(z)#21 is a complex resonant factor,d

512V exp(az)/4vK(0) is the dimensionless distance to th
subharmonic resonance@ ud(z)u!1#, j5umQ̃u/3 is the ratio
of the pump contrast to its threshold value at a given f
quency detuningd, and the asterisk means complex con
gation. As seen from Eq.~2!, the subharmonic amplitudeeK/2
tends to infinity when the threshold parameterj approaches

e

3-2
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1. This feature, crucial for the effect under study, expres
mathematically the pliancy of the subharmonic grating m
tioned in the Introduction. It is clearly seen from the expre
sion for Q̃ that the effect of frequency detuning becom
important forudu'QK/2

21!1. At d50 we have the minimum
threshold value of the contrast,mth53/QK/2 . The complex
vectorial wave amplitudesaW 0,1,2 in Eq. ~2! are generally
slowly varying functions of the propagation coordinatez.

In our next step, we obtain the governing equation for
amplitudeaW 0(z). This amplitude is changing because of se
eral factors. First, we should keep in mind the change ow
to the Bragg mismatchD ~see Fig. 1!. Second, it change
because of optical activity and the optical anisotropy indu
by the applied field. The above linear-optical effects chan
the direction ofaW 0. Third, and this is the most important,
changes because of diffraction of the pump beams from
subharmonicK/2 grating. This diffraction is also vectorial in
cubic crystals, it is accompanied by a change of the po
ization state. The progress made during recent years in
scription of vectorial coupling in cubic photorefractive cry
tals @26,28# allows us to describe the above processes i
general and compact form. Within the paraxial approxim
tion, when only thex,y components of the light amplitude
are present, we have foraW 0

~]z2 iD2 ikW •sŴ !aW 0

5 iE0~n01nW •sŴ !~eK/2* aW 11eK/2aW 2!. ~3!

Here kW 5(k1 ,r,k3) (r is the rotatory power! and nW
5(n1 ,0,n3) are certain known real three-dimensional~3D!

vectors, n0 is a real known scalar parameter, andsŴ

5(ŝ1 ,ŝ2 ,ŝ3) is the set of Hermitian sigma~Pauli! matrices
@29#. The scalar products in Eq.~3! are understood in the

conventional meaning, e.g.,kW •sŴ [(k1ŝ11k2ŝ21k3ŝ3).

The termikW •sŴ describes the linear-optical properties wh
the terms of the right-hand side account for the above m
tioned processes of vectorial diffraction. The absorption
efficient does not enter Eq.~3! because of our normalizatio
of the light amplitudes toAI 0}exp(2az/2). The use of thes
matrices greatly simplifies operations with 2D vectorial a
plitudes; see, e.g.,@28,30#.

The coefficientsk1,3, n1,3, and n0, dependent on the
electro-optical properties of the crystal, can be calculated
any particular optical configuration@28,31#. If we restrict
ourselves to the@11̄0# ~or @110#) crystal cut, which corre-
sponds to all known experiments on subharmonic genera
the componentsk1,3 can be presented in the formk1
5qE0 sinz,k3520.5qE0 cosz, wherez is the angle between
the grating vectorKW and the@001# axis,q5pn3r 41/l, n is
the refractive index, andr 41 is the electro-optic constant. Th
coefficientsn0,1,3 generally include not only the electro-opt
but also elasto-optic contributions@32,33#; the latter are often
of minor importance. With the elasto-optic contributio
04662
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omitted, we haven050.5q cosz, n15q sinz, and n35
20.5q cosz.

The cases

z50 ~KW iEW 0i@001# !

and

z5p/2 ~KW iEW 0'@001# !

correspond to the so-called longitudinal~L! and transverse
~T! optical configurations. Most of the subharmonic expe
ments have been performed in theL geometry and only a few
in theT configuration. Omission of the elasto-optic contrib
tions is well justified for these cases. It is worth noting th
the directions@001# and @001̄# cannot be distinguished in
photorefractive experiments, nor can the positive and ne
tive signs ofr 41. However, by 180° rotations of the samp
around the propagation axis we can always reverse the s
of k1,3 andn0,1,3.

The coupling parametern0 characterizes the scalar part
diffraction ~with no polarization changes! whereas the vecto
nW is responsible for the vectorial part of the interaction, ge
erally changing the polarization state. The limit of sca
coupling corresponds to the equalitynW 50W ; it can never be
realized in cubic photorefractive crystals. The opposite s
ation,n050, where the vectorial character of the beam co
pling is strongest, occurs in theT case.

The pump amplitudesaW 1,2 in Eq. ~3! cannot be set equal to
their input values because of the changes owing to the lin
and nonlinear effects. The linear effects~optical activity and
the field-induced anisotropy! are the same for them as for th
central beam. As for the effect of beam coupling onaW 1,2, it
can be neglected under fairly weak restrictions on the cry
thickness. The point is that coupling via theK grating ~see
Fig. 1!, is weak because this grating is driven far from res
nance (V2vK.3vK@gK). For any reasonable crystal pa
rameters, the above accepted inequalityad!1 justifies
omission of the relevant diffraction terms. As for the effect
pump depletion owing to diffraction from the subharmon
K/2, it can be made negligible by using a sufficiently we
input central beam. Under the assumptions made, the p
amplitudesaW 1,2 obey Eq.~3! with zero right-hand side, which
can easily be solved@28#.

By substitutingeK/2 given by Eq.~2! into Eq.~3!, one can
arrive at a closed equation foraW 0. We make, however, one
more step in the simplification of the initial equations b
performing the unitary transformation

aW 0,1,25exp~ izkW •sŴ !bW 0,1,2

[@cos~kz!1 ik21~kW •sŴ !sin~kz!#•bW 0,1,2 ~4!

from the amplitudesaW 0,1,2 to bW 0,1,2, wherek5ukW u.
For the new pump amplitudes we have]zbW 1,250, i.e.,

bW 1,2(z)5bW 1,2(0)5aW 1,2(0). In other words, these new pum
amplitudes equal the input values of the old ones.
3-3
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Transformation of the equation foraW 0 is somewhat more

difficult because the operatornW •sŴ on its right-hand side doe

not commutate withkW •sŴ . Using Eq.~2! for eK/2 , assuming
that the input polarizations of the pump beams are the sa
and measuring the phase of the central beam from the
sum of the input pump phases (F11F2)/2, we obtain finally

~]z2 iD!bW 052
E0

12j2
@~bW 0•eW0* !~Q̃8W02 iQ̃91 im0uQ̃uj!

1 i ~bW 0* •eW0!~ uQ̃uj2m0Q̃9!#~n01hW •sŴ !eW0 ,

~5!

whereW05uaW 1(0)u22uaW 2(0)u2 is the relative intensity dif-
ference of the input pump beams~the pump difference!, m0

5(12W0
2)1/2 is the input pump contrast,eW0 is the input unit

polarization vector of the pump,

Q̃85Re~Q̃!5QK/2~11d2QK/2
2 !21,

Q̃95Im~Q̃!52dQK/2
2 ~11d2QK/2

2 !21, ~6!

hW 5nW 22 sin2~kz!@nW 2nW ~nW •nW !#1~nW 3nW !sin~2kz!,

j5m0uQ̃u/3, andnW 5kW /k.

In this way, we got rid of the linear termkW •sŴ in Eq. ~3!
and explicitly expressed the coefficients in the right-ha
side of the governing equation via the input parameters.
parametersd and j are functions ofz because of light ab-
sorption, and the dependencehW (z) originates from optical
activity. No input phases enter the coefficients of Eq.~5!.

The use of the amplitudesbW instead ofaW does not produce
much trouble in calculating the observable characteristics
cause the unitary transformation~4! changes neither the
wave intensities nor the scalar products,uaW 0(z)u2

5ubW 0(z)u2, aW 1(z)•aW 2* (z)5bW 1(z)•bW 2* (z), etc. The input

values of thebW amplitudes coincide with those of the amp
tudesaW .

The most important element of Eq.~5! is, indeed, the
presence of the critical factor (12j2)21 on the right-hand
side, which ensures an infinite growth of the rate of spa
amplification in the vicinity of the threshold of subharmon
generation. If we setj50 in Eq. ~5!, we return to the mode
of zero material nonlinearity. As in@22#, the amplitude of the
central beamaW 0 is coupled with the complex conjugateaW 0* ,
which is the fingerprint of a parametric optical process. Ho
ever, the vectorial character of the interaction and the ef
of spatial inhomogeneity complicate the mathematical tre
ment of the problem.

It is useful to list and comment on the parameters affe
ing the critical enhancement. The variable experimental
rameters can be separated into critical and noncritical.
critical variable parameters are those that enter the exp
sion for j5m0QK/2/3(11QK/2

2 d2)1/2 with d51
2@V exp(az)/4vK(0)# and, therefore, define the proximit
04662
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of the singularity. First of all these are the frequency detu
ing V and the pump contrastm0 ~or W0). The quality factor
QK/2 depends on the applied fieldE0 and the grating vector
K. Some representative examples of this dependence
given in Sec. IV. The other~noncritical! variable experimen-
tal parameters are the polarizations of the input beams,
input phase of the central beamF0, and also the crysta
thicknessd. The mismatchD is also a noncritical paramete
it is expressed byK and the wavelengthl, D5lK2/16pn.
The material parameters relevant to the effect in question
ee0 ,n,r 41,r, and alsoa, Nt , andmt. The last three param
eters, which are most important, vary from sample to sam
and furthermore the absorption coefficienta and the rotatory
power r may depend strongly on the wavelengthl @3#.
Some representative examples of the choice of the exp
mental parameters for Bi12SiO20 crystals are given in Sec. IV

III. THE SIMPLIFIED VECTORIAL MODEL

It is important that for sufficiently thin crystals the effec
of spatial inhomogeneity in Eq.~5! become negligible
whereas the critical optical nonlinear effects remain qu
strong. As seen from Eq.~6! for hW and the expression ford,
the spatial inhomogeneity becomes negligible whenad
!QK/2

21,1/3, rd!1, andqE0d[pn3r 41E0d/l!1. In this

limit hW 5nW , vK5vK(0), andtherefored5(V24vK)/4vK

do not depend onz, so that the parametersQ̃ and j

5m0uQ̃u/3 @see Eqs.~6!#, are also constant. The differenc
between the amplitudesbW (z) andaW (z) is likewise negligible
in the limit of a thin crystal.

With spatially uniform coefficients, the vectorial govern
ing equation~5! admits an analytical treatment. Multiplyin
it by eW0* and setting (eW0* •aW 0),(eW0•aW 0* )}exp(Gz), we obtain
after simple algebraic calculations a quadratic equation
the rate of spatial amplification~the increment! G. Solution
of this equation gives two branches of the increment,

G65 f 16Ag22 f 2
2 ~7!

with

f 152
n̄E0Q̃8W0

12j2
,

f 25D2
n̄E0

12j2
~m0juQ̃u2Q̃9!, ~8!

g52
n̄E0

12j2
~juQ̃u2m0Q̃9!,

where the real quantityn̄5n01nW •sW0 is an effective coupling
constant andsW0 is the Stokes vector with three real comp
nents@34# characterizing the input polarization state of t
pump. For linear polarization these components are
pressed by the input polarization anglew0; if it is measured
3-4
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from the @001# axis, then (s0)15sin 2w0, (s0)250, (s0)3

5cos 2w0. For circular input pump polarization (s0)1,3
50, (s0)2561.

Equations~7! and ~8! are our generalization of the re
evant expressions of the scalar model@22# to the vectorial
case. They include the polarization and orientation dep
dences of the incrementG and also its dependence on th
frequency detuningV. Note that the incrementG does not
depend on the input polarization and phase of the cen
beam.

The quantitiesG6 are real forg2> f 2
2 and complex for

g2, f 2
2 when the square root in Eq.~7! becomes imaginary

The inequalityg2, f 2
2 is satisfied for a relatively large mis

matchD, i.e., essentially for off-Bragg diffraction to the cen
tral beam. In what follows, we refer to the regions of variab
parameters whereg2. f 2

2 and g2, f 2
2 as the Bragg and off-

Bragg regions, respectively. When approaching the singu
ity j(V,W0)→1, the square root always becomes positi
whereas the deficitD becomes unimportant and diffractio
becomes Bragg-like.

Near the singularity (0,12j!1) Eq. ~7! is strongly
simplified. One of the branches, which is of our main int
est, tends to6` whenj→1, and the second branch remai
finite. The positive value of the singular branch correspo
to the inequalityn̄E0W0,0; in this case

G1.2
3E0W0~n01nW •sW0!

m0@~11d2QK/2
2 !1/22~QK/2m0/3!#

. ~9!

In turn, the inequalityn̄W0E0,0 can always be satisfied b
changing either the sign ofW0 or the sign ofn̄; the last one
can be inverted by a 180° rotation of the sample around
z axis. Note that invertingE0 changes the sign ofvK . The
casesn̄E0,0,W0.0 andn̄E0.0,W0,0 are not equivalent
The second choice is best for critical enhancement bec
the nonlinear correction to the wave numberk0 is negative
here; it compensates for the mismatchD and facilitates
Bragg diffraction. In experiment, the sign ofW0 can be op-
timized by reversing the pump ratio.

The absolute value of the effective coupling constann̄

5n01nW •sW0 depends on the input pump polarization and a
on the choice of the optical configuration. To characterize
polarization dependence, we mention that the Hermitian

erator nW •sŴ possesses two mutually orthogonal real u

eigenvectorseW 6 such that (nW •sŴ )eW 656neW 6 . If we set the
pump polarization vectoreW0 equal toeW 6 thenn̄5n06n. Cor-
respondingly, the maximum and minimum values ofun̄u are
un0u1unu and un0u2unu. For both the longitudinal and trans
verse optical configurationsun̄umax equals the same valu
uqu5upn3r 41/lu. The optimum pump polarization is linea
for the longitudinal geometry the optimum polarization ang
wp , measured from@001#, is 90° and for the transverse ca
it is 645°. A circular pump polarization turns the scal
productnW •sW0 to zero.
04662
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The main critical parameters entering Eq.~7! are the de-
tuningV and the pump differenceW0. Figure 2~a! shows the
functions Re@G6(V)# for QK/254, D520.7 cm21, n̄E0
53.4 cm21 ~see the next section for more details!, and sev-
eral negative values ofW0. Each of the dependencesG6(V)

generally possesses two bifurcation points whereAg22 f 2
2

50. Before the bifurcation, i.e., in the off-Bragg regions, t
roots G1 and G2 are complex conjugate to each other a
the values of Re@G1(V)#5Re@G2(V)# are rather small. Af-
ter the bifurcation, i.e., in the Bragg regions, the increme
are real and the upper branchG1(V) goes up rapidly with
decreasing distance to the resonanceuV24vKu.

Below threshold, uW0u.0.66 (m0,0.75), the whole
resonant region is available for our theory. The depende
G1(V) is characterized here by an asymmetric and fa
wide peak centered at 4vK . Its height tends to infinity for
uW0u→0.66. For m0.mth50.75 our theory is applicable
only to the frequency wings, 3udu.(m0

22mth
2 )1/2; for smaller

FIG. 2. Dependence of Re(G6) on the frequency detuning fo

QK/254, un̄E0u53.5 cm21, andD520.7 cm21 for several values
of the pump differenceW0. The cases~a! and~b! correspond to the

combinations n̄.0,W0,0 and n̄,0,W0.0, respectively. The
dashed lines are plotted for the lower branch of the increm
G2(V); the dots mark the points of singularity forG1(V).
3-5
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distances the central beam appears without any seed. W
approaching the boundary of the permitted frequency reg
the incrementG1(V) grows infinitely. The branchG2(V),
shown by dotted lines, does not exhibit any singularity. T
end of each dotted line corresponds to the singular point
the corresponding solid line. Without the critical enhanc
ment, the maximum expected value ofG does not exceed
QK/2un̄E0u.13 cm21.

Figure 2~b! shows the dependences Re@G6(V)# for n̄E0
523.4 cm21 and W0.0. This case is not the best fo
Bragg diffraction. With the other parameters remaining
same, the value of Re@G1(V,uW0u)# is smaller here than the
one in the previous case, the bifurcation points are close
4vK , and they correspond to larger values of the increm
The singular behavior remains, however, essentially
same.

With our analysis of the properties of the increment co
pleted, it is useful to present an explicit expression for
projectiona05eW0* •aW 0. Within the simplified model we have

a052
1

2Ag22 f 2
2 $@a0~0!~ f 2G1!2 iga0* ~0!#eG1z

2@a0~0!~ f 2G2!2 iga0* ~0!#eG2z%, ~10!

where f 5 f 12 i f 2. In the case when the increments are r
and exp@(G12G2)z#@1 ~which is always attainable in th
Bragg region!, the term proportional to exp(G1z) dominates
in Eq. ~10!. When approaching the off-Bragg region ofV
~see Fig. 2!, the second exponent becomes important. A
result, the dependenceua0(V)u2 experiences some jerks ne
the bifurcation points~see also Sec. V; the spatial grow
here is not always monotonic and is not exponential.

The preexponential factors in Eq.~10! depend periodi-
cally ~with a period ofp) on the phase of the central bea
F0. Their effect onuaW 0u is very weak for the critical enhance
ment except in the close vicinity of the pointF0

1 where the
factor before the exponent exp(G1z) turns to zero. This value
of the phase, unwanted for amplification, is given by 2F0

1

5p1F11F21arctan(Ag22 f 2
2/ f 2), whereF1,2 are the in-

put values of the phase for the pump beams 1,2. The co
dence of the input phaseF0 with the unwanted valueF0

1

can only be occasional.
Fluctuations of the input phases can wash out the dip

the dependence of the amplification factor onF0.
Lastly, we note that with the optimized pump polarizati

vector eW0 only the projection of the amplitudeaW 0 to eW0 is
subject to spatial amplification. The optimum input polariz
tion of the central beam here is indeed the same as the p
polarization.

IV. MODEL CHARACTERISTICS OF Bi 12SiO20 CRYSTALS

Cubic crystals of Bi12SiO20 ~BSO! belonging to the point
group 23 are perhaps the best choice for detection of
critical enhancement. Most of the subharmonic experime
including the most precise ones@14,15,35,36#, have been
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performed with this material. Its main optical and photor
fractive characteristics are well described in the literat
@3,27#. Below we specify the relevant material character
tics, estimate the corresponding model parameters, ana
the applicability of the simplified vectorial model, and co
sider the range of variable experimental parameters feas
for detection of the critical enhancement.

As representative material parameters of BSO crystals
choose ee0556, n52.6, r538.6 deg/mm.6.74 cm21,
r 4154.51 pm/V, Nt51016 cm23, mt5(126)31027

cm2/V, anda51 –2 cm21. The pump wavelengthl we set
equal to 514 nm; this value is most typical of subharmo
experiments.

With these figures we estimateuqu[pn3ur 41u/l.4.85
31024 V21. Correspondingly, the rate of spatial change
the light amplitudes owing to the field-induced anisotro
.qE0 ~measured in cm21) is estimated as
.0.48E0 kV/cm. It becomes comparable with or larger tha
the rate of rotation of the polarization plane owing to optic
activity (.6.74 cm21) only for E0*15 kV/cm. Therefore
the conditionkd!1 is equivalent to the restriction on th
crystal thicknessd!1.5 mm for the fieldE0&15 kV/cm.

In the longitudinal geometry we have for the paramet
n0,1,3, characterizing the optical nonlinearityn05q/2, n1
50, andn352q/2. For linear input pump polarization w
obtain heren̄50.5q(12cos 2w0); the valueun̄umax5uqu cor-
responds to the polarization anglew05p/2, i.e.,
aW 1,2(0)'@001#. In the transverse geometry the scalar part
the beam coupling is absent,n050; furthermore,n1.q and
n350. Here we haven̄.q sin 2w0 for linearly polarized
pump beams so that the valuen̄.uqu corresponds tow05
6p/4. Note that we have deliberately used the sign. in the
T case. The point is that the elasto-optic contributions ton1
make it slightly~by .13%) larger thanq ~see@28# and ref-
erences therein!. With this accuracy, the valueun̄umax5uqu is
the same for theL andT cases, so that the data of Fig. 2 a
applicable to both these optical configurations, and the c
sen value ofuqu is a good estimate for BSO crystals.

Next we need to characterize the subharmonic quality f
tor QK/2 . Figure 3 shows the dependenceQK/2 on E0 and the
half pump angle~in air! up for two representative values o
the mt product. One sees that the conditionQK/2.3 is sat-
isfied within a fairly wide range ofE0 andup . The larger is
mt, the wider is this region and the higher is the attaina
value of the quality factor. ForE0&1.5–2 kV/cm, where
QK/2,3, subharmonic generation is not expected. At
same time, increasingE0 above 7–8 kV/cm gives no rea
gain for the quality factor. Formt&1027 cm2/V subhar-
monic generation becomes impossible. For the same valu
QK/2 the deficitD5lK2/16pn can acquire two different val-
ues; the smaller of them is expected to be preferable
critical enhancement. In what follows we use the valueE0
57 kV/cm in our numerical calculations.

If we take a51 –2 cm21 and QK/255, the inequality
ad!QK/2

21 givesd!1 –2 mm, which is not far from the re
striction imposed by optical activity. In this way, for sampl
considerably thinner than 1 mm, the simplified vector
3-6
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model is justified, whereas for the thicknessd considerably
larger than 1 mm the negative effects of optical activity a
the light absorption are expected to be strong.

In estimating an optimum crystal thickness for expe
ments regarding critical enhancement, it is necessary to k
in mind that the use of crystals considerably thinner tha
mm makes it somewhat difficult to apply an electric fie
sufficient to achieveQK/2*3. This brings us to the conclu
sion thatd.1 mm should be the best choice for experime
The last argument in favor of this choice is the assertion
the noncritical mechanisms of spatial amplification rem
fairly weak for d.1 mm and cannot be a reason for misi
terpretation of the experimental data. Any strong amplifi
tion effect can unambiguously be referred here to the crit
enhancement.

The simplified vectorial model is not expected to be re
able ford.1 mm; it has to be supplemented by numeric
calculations on the basis of Eqs.~5! and ~6!.

V. MODELING OF CRITICAL ENHANCEMENT IN BSO
CRYSTALS

The dependence of the detuningd upon z tends to dete-
riorate the resonance and to make the spatial profile ofubW 0u
nonexponential, but this dependence does not affect the

FIG. 3. Contour plotsQK/25const on theK,E0 plane for e0

556 andN51016 cm23; the cases~a! and ~b! correspond tomt
5331027 and 631027 cm2/V, respectively.
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rection of the vectorbW 0(z). However, the dependence of th
vectorhW uponz @which is mostly due to optical activity; se
Eq. ~6!# also changes the direction ofbW 0(z). In this way, the
vectorial problem under study can by no means be redu
to a scalar one beyond the framework of the simplifi
model. Numerical simulation is here the main tool for
quantitative characterization of the critical enhancement.
low we shall see the difference between the simplified a
exact solutions for critical enhancement in BSO crystals.

We start from an analysis of the gain factorG
5 log10@ ubW 0(d)u2/ubW 0(0)u2#[ log10@ uaW 0(d)u2/uaW 0(0)u2#. The
solid lines in Fig. 4 show the dependenceG(V) for the
longitudinal geometry (KW iEW 0i@001#), d51 mm, a
51 cm21, QK/254, E057 kV/cm, D520.7 cm21 (up
.1.2°), mt5331027 cm2/V, and several representativ

FIG. 4. Dependence of the gain factor G

5 log10@ uaW 0(d)u2/uaW 0(0)u2# on V for d51 mm, up51.2°, QK/2

54, and other accepted parameters of BSO crystals. The case~a!

and ~b! refer to the combinationsn̄.0,W0,0 and n̄,0,W0.0,
respectively. The solid lines are plotted on the basis of Eq.~5! and
the dashed ones correspond to the simplified model. For all th
graphs we havem0,mth . The two dot-dashed gray lines in th
cases~a! and ~b! were obtained without taking account of the m
terial nonlinearity.
3-7
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E. V. PODIVILOV et al. PHYSICAL REVIEW E 65 046623
values of the pump intensity differenceW0. All the input
polarization vectors are chosen to be perpendicular to@001#
which is optimum for the simplified model. The subfigur
~a! and ~b! correspond to the casesq.0,W0,0 and q
,0,W0.0; the first case is expected to be preferable
Bragg diffraction. The dashed lines exhibit the results o
tained within the simplified model and the two dot-dash
curves show the dependenceG(V) for W0560.7 with the
material nonlinear terms omitted.

One sees from Fig. 4 that the light absorption and opt
activity make the critical spatial amplification noticeab
weaker but they do not suppress it. As expected, the am
fication remains stronger in the case~a! (q.0,W0,0). Be-
low the threshold (uW0u5A12m0

2.0.66) it is characterized
by a frequency peak growing dramatically with increasi
m0. It is remarkable that numerically high values of the ga
are obtained already with the contrastm0 considerably lower
thanmth50.75. For example, we have almost three orders
magnitude amplification form0 /mth.0.7 (uW0u50.85) in
Fig. 4~a! and more than two orders of magnitude in Fig. 4~b!.
Above threshold (m0.3/4 or uW0u,0.66) our theory is ap-
plicable only to the frequency wings of the peak; comp
with the data presented in Fig. 2. We do not show the co
sponding wings to avoid overflow of the drawings.

The positions of the frequency maxima in Fig. 4 a
shifted toward zero as compared to those found within
simplified model. This shift is fully due to light absorptio
~see also below!. Some jerks in the frequency dependenc
of the gain factor@see, e.g., the two upper left wings in Fi
4~b!# originate from bifurcation of the functionG(V) ~com-
pare Fig. 2!. In other words, each such jerk is a fingerprint
the transition between off-Bragg and Bragg regimes of d
fraction. The effects of spatial inhomogeneity usually
smooth out the jerks@as in Fig. 4~a!# but sometimes they
make them even more pronounced.

The regularities shown in Fig. 4 for theL geometry are
essentially the same for theT case if the 90° value of the
polarization anglew0 is replaced by a645° value. The only
perceptible difference is a.13% increase of the peak am
plitudes because of the above mentioned elasto-optic co
bution ton1.

Increasing quality factorQK/2 lifts up the resonance
curves and makes the resonance narrower and more stro
affected by the spatial inhomogeneity. The solid lines 1, 2
and 4 in Fig. 5 exhibit the dependenceG(V) for the
L-configuration, d51 mm, QK/256, W0520.95 (m0
.0.31), and four different values of the light absorption c
efficient. The other relevant parameters correspond to
2~b!. The dashed peak is plotted for the simplified mod
a5r50. The line 1 (a50) shows that optical activity no
ticeably decreases the amplitude but does not change
peak profile; the resonant value ofV and the shoulder on th
right wing are essentially the same as for the dashed l
Increasinga shifts the peak toward zero, decreases its a
plitude, increases the width, and washes out the shou
Note thatm0 /mth.0.625 for the chosen parameters, i.e.,
stay rather far from the singularity.
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Next we consider the dependence of the gain factor on
propagation coordinatez. Within the simplified model this
dependence is almost linear in the Bragg region wh
exp@(G12G2)z#@1. In our analysis we extend the propag
tion distance tod52 mm. The dependencesG(z) in Fig. 6
are plotted for theT configuration,w0545°, and five repre-
sentative combinations ofV and W0. The other parameter
are the same as for Fig. 4~a!. The curves 1, 2, and 3 refer t
the left wing, the center, and the right wing of the frequen
peak forW0520.8 which is quite similar to the correspond
ing peak of Fig. 4~a!. The curves 4 and 5 refer to the left an
right wings of a bigger peak~with W0520.7).

FIG. 5. Gain factorG versusV for mt5631027 cm2/V, up

.1°, D.13.7 cm21 @see Fig. 2~a!#, andw0590°. The curves 1,
2, 3, and 4 correspond toa50, 1, 1.7, and 2.5 cm21, respec-
tively.

FIG. 6. DependenceG(z) for the transverse geometry andw0

545°. The curves are plotted for the following combinations ofW0

and V/vK(0): 1(20.8,3,1), 2(20.8,3.74), 3(20.7,4.2), 4
(20.7,3.1), and 5(20.7,4.35). The other parameters are the sa
as for Fig. 4~a!.
3-8
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For z&1 mm the dependencesG(z) are not very differ-
ent from those prescribed by the simplified model, althou
the tendency to saturation~caused mostly by the light ab
sorption! is clearly seen for curves 3 and 5 representing
right wings. Optical activity here decreases the gain factor
no more than 20%. The extension of the propagation
tance up to 2 mm leads to a strong saturation of the sp
growth. This saturation is predominantly due to optical a
tivity. In a slightly relaxed form, this saturation is als
present in theL case. A smaller negative effect of optic
activity is caused here by the occurrence of the isotropic
of the beam coupling characterized by the scalar param
n0. The effect of saturation indeed leads to strong distorti
of the frequency peaks ofG(V) for d*2 mm.

Some peculiarities in the coordinate dependence of
gain factor can occur in the casen̄,0,W0.0 where bifur-
cation of the dependenceG(V) occurs at rather high value
of the increment@see Fig. 2~b!#. Figure 7 shows the depen
denceG(z) for four points marked in Fig. 4~b!. In the off-

FIG. 7. Spatial dependence of the gain factor for the points 1
3, and 4 in Fig. 4~b!.

FIG. 8. Dependence of the degree of the polarization chan
for the central beam,C01, on V for the curves of Fig. 4~b! plotted
for W050.85 and 0.75.
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Bragg region~points 1 and 2! the spatial dependence be
comes nonmonotonic in contrast to the Bragg region~points
3 and 4!.

In contrast to the simplified model, the output polarizati
state of the central beam is different from that of the pu
beams because of the changing direction ofhW (z). To charac-
terize this difference, we have calculated the parameterC01

5ubW 0(d)•bW 1* (d)u/ubW 0(d)uubW 1(d)u, which can be considered
as the cosine of the angle between the complex vectorsbW 0

and bW 1 (aW 0 and aW 1). For identical and mutually orthogona
polarizations it equals 1 and 0, respectively. For the so
lines in Fig. 4 we have found that the value ofC01 ranges,
depending onV andW0, between 1 and 0.8. In other word
at the output the polarization of the central beam is not m
different from the pump polarization. At the same time, t
jerks of G(V) in Fig. 4 are accompanied by even sharp
jerks inC01(V). These are due to the effect of optical acti
ity but not of light absorption. Two representative examp
of the frequency dependence ofC01 are shown in Fig. 8.
With increasing gain factorG the values ofC01 tend to de-
crease, i.e., the polarization changes become more
nounced.

Lastly, we consider the effect of the input polarization
the critical enhancement. The solid lines 1 and 2 in Fig
show the dependence of the gain factor on the polariza
angle w0 ~the same for all beams! for two peak values of
G(V) in Fig. 4~a!. The corresponding dotted lines 18 and 28
illustrate the same polarization dependence within the s
plified model. In the last case, the optimum anglew0 is in-
deed 90°. For the solid lines, the maximum is shifted
.74° owing to the effect of optical activity. A similar resu
occurs for nonresonant values of the frequency detuning.
creasing crystal thickness makes this shift more pronoun

VI. DISCUSSION

In our opinion, the analytical and numerical results p
sented give an extensive view of the expected characteri

2,

es

FIG. 9. DependenceG(w0) for d51 mm in theL geometry.
The graphs 1 and 2 are plotted for the peak values ofG(V) in Fig.
4~a! corresponding toW0520.85 and20.8, respectively, and the
curves 18 and 28 refer to the same peak values obtained within t
simplified model.
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of the critical enhancement and allow us to give quite d
nite recommendations for the detection of this phenome
in BSO crystals.

Most of the BSO samples for which subharmonic gene
tion has been reported seem to be excessively thick for
tection and investigation of the critical enhancement. T
optimum thicknessd is expected to be around 1 mm. Th
negative effects of light absorption and optical activity a
moderate or small here; the competitive nonlinear opt
effects are rather weak, whereas the effect under stud
strong and controllable.

Reduction of the thickness of the sample implies shri
ing of its transverse dimensions. Such a miniaturization
the sample facilitates application of a proper dc field~5–8
kV/cm for BSO crystals! and additionally allows the pump
intensity to be increased to make the crystal response
shorter. Both these features are valuable for applications

As our calculations show, operation below the subh
monic generation thresholdm0,mth53/QK/2 offers clear
advantages for studies of the critical amplification. T
whole frequency range is allowable here for measureme
By scanning theV dependence of the gain factorG, one can
expect to see a dramatic increase of its peak value with
contrastm0 incrementally approachingmth from below.

The value ofmth can be optimized by varying the pum
half angle up within the range of 1° –4° for E0
55 –8 kV/cm. To choose the optimum signs of the coupli
constantn̄ and the pump differenceW0, one can make a
180° rotation of the sample around the propagation axis
reverse the input pump ratioI 1(0)/I 2(0). For thetransverse
geometry the adjustment of the sign ofn̄ can also be per-
formed by a 90° rotation of the input polarization plane f
the pump beams.

To distinguish the critical enhancement from the us
two-wave coupling amplification, one can block the weak
pump beam. Strong drops in the gain will prove unambig
ously an anomalous strength of the initial effect and
prime role of coupling of the subharmonicK/2 to the funda-
mental grating formed by the pump beams.

Since operation below threshold is preferable for criti
enhancement experiments, it is not necessary to attain va
of the quality factorQK/2 substantially larger than the min
mum value of 3. This means, in turn, that the necess
restriction on the material parametersmt and Nt is rather
liberal, Nmt*36ee0 /e. For crystals of the sillenite family
BSO, Bi12TiO20, and Bi12GeO20, this gives roughlymt
*1027 cm2/V, which is certainly within the range of varia
tion of the mobility-lifetime product.

The choice of the optical configuration is not really im
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portant for thin crystals; theL andT geometries are expecte
to give similar results for the critical enhancement. In theL
geometry the negative effect of optical activity is somewh
weaker than in theT case. On the other hand, theT configu-
ration allows one to test the sample for subharmonic gen
tion in the absence of optical coupling@14,15#.

The vectorial character of beam coupling in cubic cryst
gives an additional handle to verify the properties of critic
enhancement. The optimization of the linear input polari
tion (w0.90° and.645° for theL andT cases! has to be
easy to accomplish. The use of circularly polarized pu
beams, making the beam coupling isotropic, also looks
tractive for experiment; for theL case it should give an ap
proximately two times smaller gain whereas for theT geom-
etry the decreasing factor has to be much higher.

Antireflection coats are desirable for forward amplific
tion experiments. In the absence of such coats, the oppo
crystal faces could serve as a cavity for optical oscillatio
Detection of an anomalously low threshold for such an
cillation can be considered as an alternative possibility
identification of the critical enhancement.

Above we have considered the dc technique for criti
enhancement. Since the subharmonics can be generate
der an ac field~with no frequency detuning!, critical en-
hancement is expected also in this case. The theoretica
scription of this effect is more difficult as compared to the
case because of the necessity to take into consideration
higher spatial harmonics, 2K,3K, etc. @37,38#.

VII. CONCLUSIONS

We have developed a theory of the critical enhancem
of the photorefractive response in cubic crystals by tak
into account the real attributes of this phenomenon—
nonuniform broadening of the resonance owing to light a
sorption and the vectorial character of beam coupling. I
shown that despite the above complications there is a w
range of possibilities to achieve extremely high values of
spatial amplification in thin crystals by approaching fro
below the threshold of subharmonic generation. Our anal
cal and numerical results have allowed us to optimize
conditions for detection of the critical enhancement in BS
crystals and to predict its main observable features, includ
polarization, spectral, and orientation properties.
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